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Abstract—This paper presents a method for translating for-
mulas written in assertion languages such as LTL into a monitor
circuit suitable for model checking. Unlike the conventional
approach, no automata is generated for the property, but instead
the monitor is built directly from the property formula through a
recursive traversal. This method was first introduced by Pnueli et.
al. under the name of Temporal Testers. In this paper, we show the
practicality of temporal testers through experimental evaluation,
as well as offer a self-contained exposition for how to construct
them in manner that meets the requirements of industrial model
checking tools. These tools tend to operate on logic circuits with
sequential elements, rather than transition relations, which means
we only need to consider so called positive testers with no future
references. This restriction both simplifies the presentation and
allows for more efficient monitors to be generated. In the final
part of the paper, we suggest several possible optimizations that
can improve the quality of the monitors, and conclude with
experimental data.

I. AT A GLANCE

Consider the LTL formula:

for-all-paths: G¬a ∨ XF¬b

A witness to its negation satisfies:

there-exists-a-path: Fa ∧ XGb

If no such witness exists, the original formula holds. Construct
the following equisatisfiable formula by introducing a variable
for each subformula, including the full formula:

z0
∧ G(z0 ↔ z1 ∧ z2)
∧ G(z1 ↔ Fa)
∧ G(z2 ↔ Xz3)
∧ G(z3 ↔ Gb)

(1)

Since the specification is in negated normal form and all the
operators are monotonic, bi-implications can be replaced by
simple implications:

z0
∧ G(z0 → z1 ∧ z2)
∧ G(z1 → Fa)
∧ G(z2 → Xz3)
∧ G(z3 → Gb)

(2)

Two types of properties commonly supported by modern model
checking tools are:

− Safety. A counterexample is a finite path to a bad state.
− Liveness. A counterexample is an infinite path where a
set of signals f1, f2, . . . , fk are each true infinitely often.

In the following sections, it is shown how the conjuncts in (2)
can each be translated into a small monitor circuit together
with a liveness property, yielding a new model that can be
verified by existing model checking tools. Furthermore, it is
shown how the safety fragment of a temporal formula can be
checked more efficiently by producing a safety property for
that part.

Example. The conjunct G(z1 → Fa) of (2) is translated
into a circuit that outputs TRUE as long as z1 = 0, then when
z1 = 1, it starts waiting for a = 1, outputting FALSE in
the meanwhile. When a = 1 arrives, the circuit goes back
to waiting for z1 = 1, while again outputting TRUE. This
output signal needs to hold infinitely often for a witness to the
formula, and is thus added as a liveness property.

II. INTRODUCTION

A. Automata-theoretic approach

Vardi and Wolper [18] introduced the automata-theoretic ap-
proach to verification. Given a formula φ and a machine M ,
finding whether M |= φ is done by creating an automaton
A¬φ that accepts the traces that violate φ, and then checking
whether M×A¬φ is empty. In this paper we discuss generating
circuits representing finite automata for detecting finite traces
and simple Büchi automata for liveness properties.

B. Related work

Vardi and Wolper [18] showed that every LTL formula can
be translated to a Büchi automaton that accepts the same
language. There are now many approaches to perform that
translation. In this section we review the most common ones.

The first set of approaches use direct construction of a
Büchi automaton. These methods tend to be complicated, and
may generate exponentially large automata.

The second set [17] translates the LTL formula into an
alternating automaton, which is then translated into a Büchi
automaton. The main advantage is the simplicity of the re-
sulting alternating automaton, whose size is linear in the
size of the formula. The resulting Büchi automaton has an
exponential number of states in the size of the formula, but
the size of the symbolic description is linear. This approach is
also compositional; the alternating automaton for a formula is
obtained from the alternating automata for its subformulas.



An often overlooked problem with this approach is that a
good understanding of this flow, and especially of alternation
and its removal [5], is a non-trivial intellectual undertaking. In
an industrial environment, a simpler approach, especially if it
has few disadvantages, is to be preferred.

Kesten et. al. in [10], and later Pnueli and Zaks in [13],
[14] explored the use of temporal testers for verification of
LTL and PSL. A temporal tester for a formula φ is a transition
system that has a variable xφ such that G(xφ ↔ φ) holds; a
positive temporal tester is similar, except that G(xφ → φ)
holds instead. Temporal testers for simple properties can be
combined recursively for more complicated properties.

The approach presented in this paper is based on temporal
testers. Given a conjunct G(zi → φ), φ has to be true
whenever zi equals 1. This makes zi and the monitor state
machine for φ a positive temporal tester for φ.

Similarly, as noted in [13], translation through alternating
automata also results in positive temporal testers. The symbolic
description of the resulting Büchi automata (depending on
the translation method) has a variable for each subformula,
with the property that whenever the variable is true, so is the
subformula.

C. Finite traces

Some formulas, such as Gp can be shown to hold only by
infinite traces, other formulas, like Fp, by a finite trace, i.e.
the formula will hold on any infinite extension of that finite
trace. While, other formulas, such as Gp∨Fq, can sometimes
be shown to hold by a finite trace, and in other cases require
an infinite trace.

As verification tools are usually much more efficient in
detecting finite traces, it is preferable to detect finite traces
whenever possible. In subsection VI-A it is shown how this
can be achieved. The finite traces detected by our method are
the same as the informative prefixes defined by Kupferman and
Vardi in [11]. This is shown in section X.

D. ω-regular specifications

Although this paper shows how to build monitor circuits for
LTL and PLTL formulas, Pnueli and Zaks [14] showed how to
to extend this method by adding regular events to implement
support for ω-regular languages such as PSL or SVA.

III. NOTATION

By circuit, we mean a directed acyclic graph with two edge
types, complemented and non-complemented, and the follow-
ing node/gate types:

AND − A binary AND-gate.
PI − Primary input.
PO − Primary output.
FF − Flip-flop (unit delay).
TRUE− The constant true.

For the main discussion, temporal formulas are expressed in
Linear Temporal Logic extended with past operators (PLTL).
The temporal operators of PLTL are reviewed in Figure 1. The

ADJACENT STATE

X a − “next”: a holds in the next cycle
Y a − “yesterday”: a held in the previous cycle;

FALSE in the first cycle
Z a − “variant yesterday”: same as Y but TRUE

in the first cycle

SIMPLE OPERATORS

G a − “globally”: a holds forever
F a − “future”: a holds at least once in a future

(or the current) cycle
H a − “historically”: a a held up to (and inc-

luding) the current cycle (past dual of G)
P a − “past”: a held at least once in a past

(or the current) cycle (past dual of F)

UNTIL OPERATORS

[a W b] − “weak-until”: a holds up to the cycle before
b holds, or a holds forever

[a M b] − “weak-since”: a held since the cycle after
b last held, or a held since the first cycle
(past dual of W)

[a U b] = [a W b] ∧ Fb “until”
[a R b] = ¬[¬a U ¬b] “release”

[a S b] = [a M b] ∧Pb “since” (past dual of U)
[a T b] = ¬[¬a S ¬b] “trigger” (past dual of R)

Fig. 1. Informal overview of the semantics of PLTL operators.

extension to include past operators is trivial, but it allows us to
use a richer set of benchmarks. Detailed formal semantics of
PLTL can be found in [3]. A PLTL formula is any expression
using logical operators ∧, ∨, and ¬, and the temporal operators
reviewed in Figure 1. In our terminology, a signal (or atomic
proposition) is the output of a gate in the design (possibly
complemented) referred to by the specification.

A PLTL formula is in negated normal form (NNF) if
negations are present only on the atomic propositions. A
formula can be brought into NNF by using the identities
(¬Xa = X¬a), (¬Ga = F¬a), (¬Fa = G¬a), (¬[a U b] =
[¬a R ¬b]), and their past-operator duals. Example: ¬G(a∨
Pb) = F(¬a ∧H¬b)

IV. ON INTRODUCING AUXILIARY VARIABLES

In Section I, it was shown how each subformula is given a
name in the form of an auxiliary variable zi. The construction
is completely analogous to how the Tseitin transformation
[15] is used in SAT to convert a propositional formula into
an equisatisfiable CNF representation; but because we are
dealing with a temporal formula, the G is needed to ensure
that the auxiliary variable maintains its correspondence with
the subformula it represents. Because there is an implicit
existential quantifier around the LTL formula (“there-exists-
a-path”), with some abuse of notation we can repeatedly use
the identity φ(ψ) = ∃x.G(x ↔ ψ) ∧ φ(x), but leaving x to
be implicitly quantified.

Why is it sound to turn bi-implications into simple implica-
tions, as was done from equation (1) to (2)? The operators we
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allow in NNF, both logical and temporal, are all monotonically
increasing in their inputs, meaning that if op(x, y) is TRUE

in a cycle, then so are op(1, y) and op(x, 1). Hence, any
trace satisfying equation (2) can be “fixed” by identifying the
zi → RHS where zi is 0 and RHS is 1 and simply flip the
value of zi. The modified trace will satisfy (1).

V. MONITOR CIRCUITS

Assume the specification has been negated and expanded to an
equisatisfiable formula as outlined in Section I. Each conjunct
is either on the form “G (z → ∗a)” (for unary operators “*”)
or “G (z → a ∗ b)” (for binary operators). For each operator,
we describe a monitor circuit. In the next section, it is shown
how the monitors are combined to formulate a model checking
problem for the entire PLTL specification. Our monitors have
the following set of inputs and outputs:

z

a

b

pending

failed

accept

a * b

The meanings of these signals are as follows:

z: A fresh PI, also referred to as the activator, created
to match the auxiliary variable of the expansion. When it
non-deterministically goes high, the circuit starts monitoring
inputs a and b to see if they adhere to the semantics of the
operator.

a: Left input of the operator: either a signal from the design
or the activator zi of the ith monitor, synthesized for the left
subformula.

b: Right input of the operator.

pending: TRUE if the monitor has an outstanding requirement
on one or both of its input signals to be TRUE either in this
or in future cycles.

failed: TRUE if a violation has been detected, preventing
any further extension of the current trace from being a valid
witness.

accept: Must hold infinitely often for a trace to be a valid
witness. Stated negatively: if this signal goes forever FALSE,
then the trace is not valid.

The system of monitors can be thought of as follows: The top-
monitor is activated by asserting z0 = 1 in the first cycle. This
monitor, in order to meet its accept condition and avoid its
failed constraint, will force one or both of its subformulas to
be activated, either now or later. The process propagates down
through the formula tree. If we can find an infinite run with
no monitor outputting failed, and with each monitor having
an infinite number of accepts, then a witness to the temporal
formula has been produced. Note that the non-deterministic
activator variables are all existentially quantified, which means
that we can defer to the underlying model checker to “guess”
perfectly when they should be activated.

Fig. 2. Monitor circuit for G(z → Fa).

Below, we illustrate some LTL operators as monitor cir-
cuits. Yf denotes the previous value of f (which translates
directly into a zero-initialized FF whose next-state function is
f ), and is init denotes a signal which is TRUE only in the first
cycle.

If accept is left out, it is assumed to be constant TRUE. If
failed or pending are left out, they are assumed to be constant
FALSE.

G(z → Xa)
pending = z
failed = Yz ∧ ¬a

G(z → Ga)
pending = (Y pending) ∨ z [= Pz]
failed = pending ∧ ¬a [= Pz ∧ ¬a]

G(z → Fa)
pending = (z ∨ (Y pending)) ∧ ¬a
accept = ¬pending

G(z → [a W b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a

The 1-to-1 correspondence between this textual representation
and a circuit diagram is illustrated for the F operator in
Figure 2.

Past operators Pa and Ha are trivially implemented by a
single flop remembering if a has held at least once, or always,
in the past:

once a = a ∨ (Y once a)
always a = a ∧ ¬(Y ¬always a)

VI. RUNNING THE MODEL CHECKER

Putting together all the steps of our approach:

1) The original specification φ is converted to an equivalent
NNF formula ψ.

2) ψ is expanded to an equisatisfiable conjunction of
“G(zi → 〈expr〉)” formulas by introducing a variable zi
for each subformula.

3) For each such conjunct, a monitor circuit is created.

4) The initial activator z0 is replaced by is init.

5) All failed signals are OR-ed together and a flop is
introduced to remember if any monitor has ever failed.
Formally:

init(has failed) = 0
next(has failed) = FAILED
FAILED = failed1 ∨ . . .∨ failedn ∨ has failed
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Fig. 3. Monitor circuit for the LTL formula G(req → F gnt). After
negation, the formula becomes F(req ∧ G¬gnt), which is translated into:
z0 ∧ G(z0 → Fz1) ∧ G(z1 → req ∧ z2) ∧ G(z2 → G¬gnt),
where activators z1 and z2 are two new primary inputs introduced for the
subformulas and “is init”, which is true only in the first cycle, replaces z0 in
the circuit.

Which is just another way of stating:

FAILED = P (failed1 ∨ . . .∨ failedn)

6) The liveness checker is called on:

infinitely often(accept1, . . ., acceptn)

under the constraint ¬FAILED. If the checker does not
support constraints, it can be folded into the property:

infinitely often(accept1 ∧ ¬FAILED, . . .,
acceptn ∧ ¬FAILED)

An example of a final monitor circuit is shown in Figure 3.

A. Safety fragment

Remember that we are working in the negative, and that
disproving a safety property “for-all-paths: G p” corresponds
to finding a witness to “F ¬p”, i.e. a path to a bad state.
Normally witnesses of temporal formulas are infinite traces,
but in this case, any infinite extension of a finite prefix leading
to the bad state is a valid witness. This is a bounded witness or
bad prefix [11], and in our monitor formalism, it corresponds to
having no pending signals. Therefore, a search for a witness to
a temporal formula can be split into two parts: (i) the search for
a finite, non-failing trace, where the last state has no pending
signal; or (ii) the search for an infinite, non-failing trace where
all accepts happen infinitely often. The key is that the first
type of search can be carried out by a safety-checker, which is
more efficient than the more general liveness-checker needed
for the second type. The part of the property checkable by (i)
is referred to as the safety fragment.

This observation can be used to improve our model check-
ing process by:

1) Collecting pending signals:

PENDING = pending1 ∨ . . .∨ pendingn

2) Generating a safety check to be executed before the
liveness check:

reachable(¬FAILED ∧ ¬PENDING)

If this call is UNSAT (no witness found), we run the
liveness checker. The liveness property can then be con-
strained further by adding PENDING as a constraint.

B. Assumptions and Assertions

Generally, a specification is composed of two types of for-
mulas, assumptions, modeling the behavior of the external
environment, and assertions, describing the specific behavior
of the design under verification. A counterexample for the
specification must satisfy all the assumptions and violate at
least one of the assertions. Unfortunately, if combined directly
into a single LTL formula “assumptions → assertions”, the
constraints may force infinite counterexamples where finite
ones are expected easier to find. Therefore, most verification
tools check safety only under the requirement that assumptions
have not yet been violated at the point where the assertion fails.
As an example, consider a zero-initialized counter under the
assumption “G (counter < 10)” and the assertion “G (counter
6= 5)”. In five cycles, the counter will reach a bad state, but
the system has no infinite runs that satisfy the assumption.
A safety-checker would produce a counterexample, which is
reasonable because the assumption fails after the bad state
is reached. In contrast, a liveness tool would consider the
property valid because there is no infinite counterexample.

To implement this relaxation in our framework, we ignore
accept and pending for all monitors belonging to assumptions.
This clearly changes the semantics of the property, but may
be a reasonable compromise (and most probably what the user
intended). This can be presented as an option to the user to be
accepted or not.

VII. OPTIMIZATIONS

A. Monotonic signals

Suppose the user chose to use past operators to express weak
until, as in the right-hand side of the following expression:

[a W b] = G(a ∨Pb)

Then, this will lead to the following translation:

G(z0 → Gz1)
∧ G(z1 → a ∨ z2)
∧ G(z2 → Pb)

Here we see a problem: as soon as the first monitor is activated
(z0 = 1), it will be forever pending. However, the native
monitor of weak-until does not share this property. This can be
resolved by observing that Pb is a monotonic signal, and that
once true, remains true, which motivates introducing a signal
done for each monitor:

done: This signal should be TRUE only if the monitor has
reached a state where failed can never happen and accept
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will hold infinitely often. If this cannot be computed easily,
done could conservatively be set to FALSE.

The done signal can be produced either explicitly by each
monitor (extending the contract for what a monitor is), or
derived by an analysis of the failed and accept signals. The
pending condition for the G operator is updated to:

G(z → Ga)
pending = Pz ∧ ¬a.done
failed = pending ∧ ¬a

The default interpretation of “a.done” for a non-activator
variable a, is FALSE. But all signals in the specification can be
checked for monotonicity in the design by 1-induction, which
is typically very fast. If an atomic signal a is monotonically
increasing, “a.done” can be interpreted as just a. If not,
“a.done” should still be treated as FALSE.

As an example of how the done signal can be explicitly
produced, consider the operators:

G(z → Pa)
failed = z ∧ ¬Pa
done = Pa

G(z → a ∨ b)
failed = z ∧ ¬(a ∨ b)
done = a.done ∨ b.done

For reasonably sized LTL specifications, we can afford to
do the following automated and more precise analysis using
symbolic techniques, similar to the constraint analysis of [8]:

Done analysis. For each monitor Mi, let di denote
“accept∧¬failed” for the signals of that monitor, Let C de-
note a conjunction of constraints and invariants that known
to hold for the system. This will include “¬FAILED”
as well as “(

∧
k sk → s′k)” for the monotonic signals

s1, s2, . . . , sk derived from the design. Now, for each
monitor, check whether “di ∧C → d′i” is true using SAT.
If so, let the done signal for Mi be defined as di and
continue the analysis. Optionally, di → d′i can be added
to C to strengthen future checks.

Note! It should be emphasized at this point that the proposed
analysis of failed and accept signals, as well as the analyses
described in the next two subsections, are performed only on
the combined monitor circuit, which is small, and not on the
design, which may be large. The only exception is the 1-
induction step, which is performed on the design and offers
a highly selective way of bringing some particularly useful
information about the design into the analysis of the monitors.
This invariant information (monotonicity of signals) can be
used for the done analysis above, as well as in the analyses
described in the next two subsections.

B. Deadlock states, Acceptable states and Reachable states

Deriving constraints is useful both for strengthening the ana-
lyses described in this section, and for proving the property.
We make two observations:

− States that for any sequence of inputs will eventually reach
FAILED cannot be part of a witness.

− States that cannot, for any sequence of inputs, reach a given
accepti signal cannot be part of a witness.

The first type of states corresponds to deadlock states, and
is characterized by the transitive strong preimage of FAILED.1

This set can be computed symbolically for the combined mon-
itor circuit using e.g. BDDs or SAT based cube-enumeration.
The negation is then added as a constraint to the system.

Similarly, the second type of states can be derived by taking
the transitive (weak) preimage of each accepti and intersecting
the results. This corresponds precisely to constraint extraction
for safety properties as described in [6], interpreting each
accepti signal as a bad state.

Finally, the (forward) reachable states of the combined
monitors can be computed, and this invariant added to the set
of constraints. Although it is redundant in the sense that it will
not restrict the search space for finding witnesses, it can make
inductive proofs easier and strengthen the analyses presented
in this section.

We hypothesize that deriving constraints and invariants
will give similar benefits to determinizing the automaton [2]
when used with inductive proof-methods, such as k-induction,
interpolation and PDR/IC3.

C. Fewer auxiliary variables

Introducing an auxiliary variable for each subformula is not
always necessary. It is most obvious for the logical operators,
where a subformula with multiple ANDs and ORs can be
turned trivially into a single monitor with only one activator
zi, introducing a single new PI.

Also we can save on PIs and get a smaller translation for
the G-operator. If we have:

G(zi → Gzj)

then, assuming zj is a PI introduced for a subformula, we can
simply remove it and replace each occurrence of zj by Pzi. In
the same way, we can save up to two PIs for each ∧-operator:

G(zi → zj ∧ zk)

If zj and zk are PIs, they can be replaced by zi.

These transformations can be understood by looking at the
definition of failed, which for the G-operator is “failed =
Pzi ∧ ¬zj”. Since the left-hand side is constrained to FALSE,
we have: ¬(Pzi ∧ ¬zj) = (Pzi → zj), and since we only
need to propagate activation downwards to subformulas, it is
safe to substitute zj for Pzi.

Another way of achieving simplifications of the above sort
is by performing signal correspondence [16], [4], [12], [9]
under constraints. This analysis will detect equivalent nodes
in the combined monitor circuit and simplify the netlist by
transferring fanouts from all equivalent nodes into one repre-
sentative node. The fact that these signals are equivalent must

1The strong preimage of S is the set of predecessor for which all next states
are in S.

5



 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

M
on

ito
r 

C
irc

ui
t

Ltl2smv

Fig. 4. Scatter plot of results in log-scale. This plots include all data points,
even the short runs omitted from the table.

be maintained, but if on the left-hand side of the equivalence
is a PI (as often happens) with no other fanouts, i.e. “PI ↔
〈some node〉”, then that constraint can always be satisfied and
hence dropped.

VIII. EXPERIMENTAL RESULTS

For the experimental evaluation we used the same benchmarks
as Biere et. al. in [3], which can be downloaded from [1].
The benchmark suite consists of 14 designs, 12 of which we
could use (the 1394 and csmacd designs could not be handled
correctly by our parser). Each design contains several PLTL
properties. For each property, two monitors were generated,
one using the method described in this paper, and one us-
ing the tool LTL2SMV [7], which builds a monitor from a
Büchi automaton produced through the alternating automata
approach. Both monitors were then combined with the design
and given to a liveness checker [19]. Verification times are
reported in Figure 5 and plotted in Figure 4. The benchmarks
were carried out on a dual 8-core Intel Xeon E5-2670 with
128 GB of memory, using a timeout of 600 seconds.

Analysis. LTL2SMV provides an alternating automata based
approach without much optimizations. This was compared
against an unoptimized implementation of the method pre-
sented in this paper. Verification runtimes suggests that the
two methods are comparable with a small advantage to the new
method. Because of its simplicity, this makes it an interesting
option for industrial implementation as well as future research.
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Design
∣

∣ LTL2SMV CIRCUIT
∣

∣ (in sec) (in sec)

abp4-p2false
∣

∣ 6.8 0.7
abp4-p2true

∣

∣ 65.3 1.2
abp4-pold

∣

∣ 191.6 1.4
abp4-ptimo

∣

∣ 5.2 0.6
abp4-ptimoneg

∣

∣ 0.8 5.7
bc57-sensors-p0

∣

∣ 35.9 20.0
bc57-sensors-p0neg

∣

∣ 547.8 4.8
bc57-sensors-p1

∣

∣ 0.0 –
bc57-sensors-p1neg

∣

∣ 404.6 5.9
bc57-sensors-p2

∣

∣ – 24.2
bc57-sensors-p2neg

∣

∣ 164.5 5.9
bc57-sensors-p3

∣

∣ 293.1 6.6
brp-p1

∣

∣ 43.0 79.9
brp-ptimonegnv

∣

∣ 16.8 100.4
dme2-ptimo

∣

∣ 5.1 3.6
dme2-ptimonegnv

∣

∣ 5.7 4.4
pci-p1

∣

∣ 133.0 427.5
pci-pFtimo

∣

∣ 9.4 6.8
pci-ptimo

∣

∣ 35.8 20.6
prod-cons-p0

∣

∣ 1.3 2.1
prod-cons-p0neg

∣

∣ 2.6 6.7
prod-cons-p1

∣

∣ 0.7 0.6
prod-cons-p1negnv

∣

∣ 1.3 1.0
prod-cons-p5

∣

∣ 3.1 1.6
prod-cons-p5neg

∣

∣ 0.4 0.7
prod-cons-pold1

∣

∣ 3.9 1.1
prod-cons-pold3

∣

∣ 1.3 1.2
prod-cons-pold4

∣

∣ 0.5 0.7
production-cell-p0neg

∣

∣ – 167.2
production-cell-p1

∣

∣ 295.1 349.6
production-cell-p1neg

∣

∣ 300.6 122.5
production-cell-p2

∣

∣ 243.3 –
production-cell-p2neg

∣

∣ – 205.6
production-cell-p3

∣

∣ 221.0 308.7
production-cell-p3neg

∣

∣ 452.8 –
production-cell-p4

∣

∣ – 347.1

Total solved:
∣

∣ 32 33

Fig. 5. Table of results. A timeout of 10 minutes was used. Benchmarks that
were solved by both approaches in less than 0.5 seconds were removed from
the table to conserve space.
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X. APPENDIX – INFORMATIVE PREFIXES

This section shows that the monitors described in this paper
accepts precisely the informative prefixes. For brevity, the
exposition is limited to the temporal operators X and U. A
prefix, or a finite trace, refers to an assignment to the atomic
propositions for the first n cycles.

Definition 1 (Kupferman and Vardi [11]). The prefix
s1, . . . , sn is informative for a formula φ if there exists a map
L from {1, . . . , n+1} to the set of subformulas of φ such that:

1) φ ∈ L(1)

2) L(n+ 1) = ∅

3) If an atomic proposition p ∈ L(i) then si |= p

4) If a ∨ b ∈ L(i) then a ∈ L(i) or b ∈ L(i)

5) If a ∧ b ∈ L(i) then a ∈ L(i) and b ∈ L(i)

6) If Xa ∈ L(i) then a ∈ L(i+ 1)

7) if [a U b] ∈ L(i) then either b ∈ L(i) or a ∈ L(i) and
[a U b] ∈ L(i+ 1)

To match precisely the formalism of [11], an additional trivial
monitor is added for the atomic propositions. For practical

purposes it can be optimized away, resulting in the construction
described in this paper:

G(z → a)
failed = z ∧ ¬a

Proposition 1. If s1, . . . , sn is an informative prefix for
formula φ, then the trace s1, . . . , sn is accepted by the monitor
circuit of φ.

Proof: The prefix assigns values to the atomic propo-
sitions. In our monitor formalism, additional primary inputs
are introduced for for the activator variables. To complete the
trace, the activator for ψ, zψ, is set to TRUE in cycle i iff
ψ ∈ L(i). It must now be shown that the augmented trace is
accepted by the monitor. More precisely:

(a) The activator of φ is TRUE in the initial cycle.
(b) All failed signals are FALSE everywhere on the trace.
(c) All pending signals are FALSE in cycle n.

We first observe that on this augmented trace, if the pending
signal holds, the activator must hold as well in the same cycle.
For the atomic propositions, boolean connectives and X, the
pending signal is defined to be the activator signal, so the
observation trivially holds. Assume for contradiction that the
observation does not hold for ψ = [a U b], and let i be the
first cycle in which it is false, i.e. the pending signal holds
but the activator does not. From the monitor constructions, the
pending signal for [a U b] is defined to be:

pending = (zψ ∨Ypending) ∧ ¬zb)

which can be simplified by the assumption that zψ = 0:

pending = Ypending ∧ ¬zb

For pending to hold on cycle i, it must hold on cycle i−1, but
since i is the first cycle in which pending can be set without
the activator, the activator must be TRUE in cycle i − 1, and
therefore [a U b] ∈ L(i − 1). The definition of pending also
requires that zb must not hold in cycle i − 1 and therefore
b 6∈ L(i − 1). But the definition of L then forces [a U b] to
hold in cycle i which contradicts the assumption, proving the
observation for [a U b]. Now:

(a) Follows directly from φ ∈ L(1).

(b) We prove for each operator separately:

– For ψ = p, an atomic proposition. failed := zψ ∧ ¬p.
However, by definition of L, if p ∈ L(i) then si |= p.
zp is true iff p ∈ L(i), so the combination of si |= ¬p, and
zp = TRUE can never happen.

– For ψ = a ∧ b, failed := zψ ∧ ¬(za ∧ zb). However, by
definition of L, if a∧ b ∈ L(i) then a ∈ L(i) and b ∈ L(i).
The connectors are TRUE iff the corresponding formulas are
in L(i), so the combination of a ∧ b ∈ L(i), a ∈ L(i), and
b ∈ L(i), can never happen. The same applies to ψ = a∨ b.

– For ψ = Xa, failed := Y zψ∧¬za. However, by definition of
L, Xa ∈ L(i− 1) and a 6∈ L(i) can never happen together.

– for ψ = [a U b], failed := pending ∧ ¬za. We proved
that if pending holds then the activator zψ must hold as
well, therefore [a U b] ∈ L(i). Substituting the definition
of pending gives us failed := (zψ ∨Ypending)∧¬zb ∧¬za.
So for failed to be TRUE, we must also have a, b 6∈ L(i),
but cannot happen together with [a U b] ∈ L(i).
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(c) For each operator that can possibly set pending to TRUE:

– For ψ = Xa, Xa ∈ L(n) requires that a ∈ L(n + 1),
and therefore the activator of Xa cannot be set on cycle n.
Therefore, neither can pending.

– For ψ = [a U b], pending := (zψ ∨ Y pending) ∧ ¬zb. to
make the pending signal TRUE in cycle n, we must have
[a U b] ∈ L(n), which requires that either a ∈ L(n) ∧
[a U b] ∈ L(n+1) or b ∈ L(n). The former cannot happen
because L(n+ 1) = ∅, and therefore zb must hold, setting
the pending signal to FALSE.

Proposition 2. If the finite trace s1, . . . , sn is accepted by the
monitor circuit of φ, then s1, . . . , sn is also an informative
prefix for formula φ.

Proof: We need to show the existence of a map L. To
facilitate its definition, we change all the activator variables
for formulas [a U b] in cycle i to TRUE if the pending signal
holds in cycle i−1. This is allowed because activator variables
are not atomic proposition, and are not used in the definition
of an informative prefix.

If pending held at cycle i before the change, then the
change does not affect failed or pending. If pending held at
cycle i − 1 and did not hold in cycle i before the change, it
means that zb must already have held in cycle i, so again, failed
and pending are not affected and the trace is still accepted by
the monitor.

We define for i ∈ {1, . . . , n}, L(i) := {ψ | activator signal
of ψ is set in cycle i} and L(n + 1) := ∅. It remains to
show that this L satisfies the requirements of definition 1. The
construction of the monitor guarantees that the activator of φ
holds in the initial cycle.

The only operators that can prevent L(n+ 1) from being
empty are X and U. For ψ = Xa, the activator cannot hold in
cycle n because it is equal to pending, therefore Xa 6∈ L(n). If
[a U b] ∈ L(n), and pending is FALSE, then zb must hold on
cycle i, and therefore b ∈ L(n), consistent with L(n+1) = ∅.

The rest of the conditions also hold. For atomic proposi-
tions, the boolean connectives and X, failed becomes TRUE

when the activator holds and the condition of L is violated. It
is only for ψ = [a U b] that this is not immediately obvious. If
the activator of [aU b] holds, then either zb holds, and pending
becomes FALSE, or zb is FALSE and pending becomes TRUE,
forcing the activator to hold in the next cycle and forcing za
to hold for failed not to become TRUE. This is exactly the
condition of definition 1.

XI. APPENDIX – LIST OF MONITORS FOR PLTL

Below is a complete list of monitors for PLTL. Variable t is
local to each monitor. If accept is left out, it is assumed to
be constant TRUE. If failed or pending are left out, they are
assumed to be constant FALSE.

G(z → Xa)
pending = z
failed = ¬is init ∧ (Yz ∧ ¬a)

G(z → Ya)
failed = z ∧ ¬Y(a)

G(z → Za)
failed = z ∧Y(¬a)

G(z → Fa)
pending = (z ∨ (Y pending)) ∧ ¬a
accept = ¬pending

G(z → Ga)
pending = (Y pending) ∨ z
failed = pending ∧ ¬a

G(z → Pa)
t = Y(t) ∨ a
failed = z ∧ ¬t

G(z → Ha)
t = ¬Y(¬t) ∧ a
failed = z ∧ ¬t

G(z → [a W b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a

G(z → [a U b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a
accept = ¬pending

G(z → [a R b])
pending = (z ∨ (Y pending)) ∧ ¬a
failed = (z ∧ ¬b) ∨ ((Ypending) ∧ ¬b)

G(z → [a S b])
t = (Yt ∧ a) ∨ b
failed = z ∧ ¬t

G(z → [a T b])
t = b ∧ (¬Y(¬t) ∨ a)
failed = z ∧ ¬t

G(z → a ∧ b)
failed = z ∧ ¬(a ∧ b)

G(z → a ∨ b)
failed = z ∧ ¬(a ∨ b)

G(z → FALSE)
failed = z

G(z → TRUE)
(nothing)
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